Isotope Effects and Coupling Constants in $[CpV-(CO)_3(^{1,2}H)]^-$ and the ¹³CO and C¹⁸O Isotopomers of $CpV(CO)_4$ and $[V(CO)_6]^-$

MARTIN HOCH and DIETER REHDER*

Institut für Anorganische Chemie der Universität, D-2 Hamburg 13, F.R.G.

Received July 8, 1985

The high-field (low-frequency) isotope shift of metal shielding on going from ML_n to $ML_{n-x}L'_x$, where L' is the heavier isotopomeric ligand, is usually discussed in terms of a decrease of the vibronic ground states, leading to an increase of the average HOMO-LUMO splitting ΔE . An increase of ΔE decreases the paramagnetic deshielding contribution to the overall shielding [1, 2]. We have recently reported on the effects of ¹³CO upon the pattern of the ⁵¹V NMR spectra of $[V({}^{12}CO)_{6-n}({}^{13}CO)_n]^-$ [3]. In the present paper, we extend our studies to the effect of C¹⁸O substitution, and to the isotopomers obtained by replacing CO in CpV(CO)₄ by ¹³CO, C¹⁸O, ¹H⁻ and ²H⁻. Data are presented in Table I.

Replacement of ¹²CO by ¹³CO in CpV(CO)₄ can be achieved via the *in situ* generation of CpV(CO)₃-THF [4]. For this purpose, CpV(CO)₄ (100 mg) dissolved in THF (40 ml) is irradiated for 8 min at 240 K under ¹³CO and, with occasional shaking, brought to room temperature within *ca.* 30 min. Repetition of this procedure in two more cycles yields a mixture of CpV(¹²CO)_{4-n}(¹³CO)_n with a molar ratio of the different species for n = 0/1/2/3/4of 25/40/25/10/1 (by simulation of the ⁵¹V NMR). The ⁵¹V NMR spectrum of this mixture (Fig. 1, a)

*Author to whom correspondence should be addressed.

TABLE I. NMR Data

Fig. 1. ⁵¹V NMR spectra of ¹³CO (a) and C¹⁸O enriched CpV(CO)₄ at a resolution of 1.27 (a) and 0.35 Hz/data point (b). The spectra have been obtained on Bruker spectrometers: (a) WH 90, 23.66 MHz, THF solution (acetone-d₆ as external lock); (b) AM 360, 94.61 MHz, CDCl₃ solution. The spectrum of the ¹³CO enriched sample (31%) exhibits the binominal multiplets of the isotopomers CpV(¹²CO)_{4-n}-(¹³CO)_n with n = 0 to 4.

shows the expected binominal multiplets for the various isotopomers. *cis*- and *trans*- $[CpV(^{12}CO)_2$ - $(^{13}CO)_2]$ are not distinguished.

There is an eight-line pattern in the ¹³C NMR (Fig. 2; the eight lines are due to the coupling of ¹³C to the spin 7/2 nucleus ⁵¹V), differing from the corresponding pattern for $[V({}^{12}CO)_{6-n}({}^{13}CO)_n]^-$ [3] in that the lines are much broader. The ¹³C resonance of the Cp ring has a plateau-like shape due to coupling to ⁵¹V; the overall width is 64 Hz. Hence, an upper limit for ¹J(${}^{51}V-{}^{13}CD$) is 9 Hz. The coupling constant ${}^{1}J({}^{51}V-{}^{13}CO)$ is 107 Hz, which compares to ${}^{1}J({}^{51}V-{}^{13}C) = 116$ Hz for $[V(CO)_6]^-$ [3], ${}^{1}J({}^{51}V-{}^{13}C)$

Compound	δ(⁵¹ V) ^a (ppm)	Δδ ^b (ppm)	δ(L) ^c (ppm)	¹ <i>J</i> (⁵¹ V–L) ^c (Hz)
$CpV(^{12}CO)_4$				
$CpV({}^{12}CO)_{4-n}({}^{13}CO)_n$ $CpV(C^{16}O)_{4-n}(C^{18}O)_n$	100	-0.46(2) -0.1^{d}	+256.6 ^e	107
$[CpV(CO)_{3}(^{1}H)]^{-}$	-1730	4.7(1)	-6.33	21.7 f
$[V(CO)_3(-H)]$	-1952	-4.7(1)		
$[V({}^{12}CO)_{6-n}({}^{13}CO)_n]^-$ $[V(C{}^{16}O)_{6-n}(C{}^{18}O)_n]^-$		-0.27(3) -0.10(2)	+225.3	116

^aRelative to VOCl₃. ^b(Mean) isotope shift per heavier isotopomeric ligand. ^cL = ¹³CO or ²H. The ¹³C and ¹H δ values are given relative to TMS. ^dEstimate (see text). ^eThe ¹³C resonance for the Cp ring is centered at +92.5 ppm (cf. also ref. 10); an upper estimate for the ⁵¹V-¹³C coupling constant is 9 Hz (see text). ^fNot resolved.

Fig. 2. CO pattern in the 20.115 MHz ¹³C NMR of ¹³CO enriched (31%) CpV(CO)₄ in acetone- d_6 at a resolution of 1.58 Hz/data point. Bruker WP 80, repetition time 20 s, pulse widths 4 μ s, 2800 scans.

 117,119 Sn) = 900 Hz for [CpV(CO)₃SnCl₃]⁻ [4] and $^{1}J(^{93}$ Nb $^{-13}$ CO) = 221 Hz for CpNb(CO)₄ [5].

The mean isotope shift per ^{13}CO , $\Delta\delta(^{13}C)$, amounts to -0.46(2) ppm and is thus somewhat larger than the isotope shifts in the $[V(^{12}CO)_{6-n}]$ $(^{13}CO)_n$]⁻ system (vide infra) [3]. The increase of 51 V shielding with the heavier isotope is linear within the limits of error. The partial replacement of ¹²CO by ¹³CO decreases the local symmetry as evidenced by the CO stretching pattern in the IR spectrum. Diminished local symmetry should lead to a low-field shift and a broadening of the ⁵¹V resonance relative to $CpV(^{12}CO)_4$ [2, 5]. However, no such effects are observed (in fact, the $W_{1/2}$ are 20(2) Hz throughout); in the NMR experiment, the metal nucleus exhibits an effective local symmetry exclusively related to the electronic nature of the ligands. Similar effects, though less pronounced, have been noted for the partial replacement of CO by equally good π acceptor PF₃ [5].

 $[V(C^{16}O)_{6-n}(C^{18}O)_n]^-$, prepared as described for the generation of the corresponding ${}^{12}CO/{}^{13}CO$ isotopomers [3], clearly exhibits, in the ⁵¹V NMR spectrum, distinct signals for n = 0 to 5 (Fig. 3) with a molar ratio of 1/4/9/10/6/2 for n =0/1/2/3/4/5, representing an overall C¹⁸O content of 45%. The isotope shift, $\Delta\delta(^{18}O)$, is -0.10(2)ppm; the increase with increasing substitution is again linear. The spectrum in Fig. 3 also shows the natural abundance ¹³C satellite doublet. The fine structure of the two components (spaced by J(VC) = 116 Hz) reflects the $[V(^{12}C^{16/18}O)_5(^{13}C^{16, 18}O)]^-$ isotopomers. $\Delta\delta(^{18}O)$ is definitely smaller than $\Delta\delta(^{13}C)(-0.27(3))$ ppm), showing that if a decrease of the vibronic ground level is responsible for the isotope shift, the ligand atom not directly bonded to the metal provides, not unexpectedly, a smaller contribution. Similar results have been reported for the ⁵⁹Co resonances of $[Co({}^{12}CN)_{6-n}({}^{13}CN)_n]^{3-}$ and $[Co-(C{}^{14}N)_{6-n}(C{}^{15}N)_n]^{3-}$ [1].

C¹⁸O substitution in CpV(CO)₄ is carried out as noted for ¹³CO (*vide supra*) to yield CpV(C¹⁶O)_{4-n}-(C¹⁸O)_n (IR evidence; compare the appropriate IR analysis in ref. 6). The spectrum (Fig. 1, b) exhibits an asymmetric, partly split resonance accompanied by the high-field component of the ¹³C (natural

Fig. 3. 94.541 MHz (Bruker AM 360) ⁵¹V NMR spectrum of ¹⁸CO enriched (45%) [V(CO)₆]⁻ in acetone-d₆ at a resolution of 1.22 Hz/data point. Assignments refer to the isotopomers $[V(C^{16}O)_{6-n}(C^{18}O)_n]^-$ with n = 0 to 5. A similar pattern arises for the ¹³C (natural abundance) doublet (small numbering).

abundance) satellite doublet, which represents the non-resolved lines for the $^{13}\mathrm{C^{16,18}O}$ isotopomers. The mean position of this doublet should be shifted relative to unsubstituted CpV($^{12}\mathrm{C^{16}O})_4$ by -0.56 ppm. This value represents the joint effects of $\Delta\delta(^{13}\mathrm{C})$ (-0.46) and $\Delta\delta(^{18}\mathrm{O})$ (-0.1), assuming the same $\Delta\delta(^{18}\mathrm{O})$ as measured for the hexacarbonyl-vanadate(1–). The low-field component of the satellite doublet partially overlaps the signals for CpV(C¹⁶O)_3(C¹⁸O) and CpV(C¹⁶O)_2CpV(C¹⁸O)_2.

A sizable isotope effect of -4.7 ppm is observed on going from $[CpV(CO)_3^1H]^-$ to $[CpV(CO)_3^2H]^-$. A mixture of the hydrido and deuterido complexes (with the lighter isotopomer as the main component) is obtained [7, 8] when $Na_2[CpV(CO)_3]$ (from CpV(CO)₄ and Na/Hg in THF) is dissolved in a 1/1 mixture of C(¹H)₃CN and C(²H)₃CN. The isotope shift is similar in magnitude to that reported for $[CpNb(CO)_3H]^-$ (-6 ppm) [7] and $CpW(CO)_3H$ (-10 ppm) [9]. While $[CpV(CO)_3^1H]^-$ shows a partly resolved doublet (peak-to-peak distance 16 Hz; ${}^{1}J({}^{51}V_{-1}H) = 21.7$ Hz) with an overall $W_{1/2} =$ 54 Hz, the coupling in $[CpV(CO)_3^2H]^-$, as expected from the small $\gamma(^{2}D)$, is not observed. The signal for the deuterido complex is not significantly broadened with respect to the hydrido complex. The ¹H resonance of this compound is a broad plateau [8].

Inorganica Chimica Acta Letters

References

- 1 P. C. Lauterbur, J. Chem. Phys., 42, 799 (1965).
- 2 D. Rehder, Magn. Reson. Rev., 9, 125 (1984).
- 3 K. Ihmels, D. Rehder and V. Pank, *Inorg. Chim. Acta*, 96, L69 (1985).
- 4 M. Hoch and D. Rehder, J. Organomet. Chem., in press.
- 5 D. Rehder, H.-Ch. Bechthold, A. Kececi, H. Schmidt and M. Siewing, Z. Naturforsch., Teil B:, 37, 631 (1982).
- 6 I. S. Butler and H. F. Fenster, J. Organomet. Chem., 51, 307 (1973).
- 7 F. Näumann, D. Rehder and V. Pank, J. Organomet. Chem., 240, 363 (1982).
- 8 U. Puttfarcken and D. Rehder, J. Organomet. Chem., 185, 219 (1980).
- 9 H. C. E. McFarlane, W. McFarlane and D. S. Rycroft, J. Chem. Soc., Dalton Trans., 1616 (1976).
- 10 A. N. Nesmeyanov, E. I. Fedin, L. A. Fedorov and P. V. Petrovskii, *Zh. Strukt. Khim.*, 13, 1033 (1972).